Jump to content

Simple function

From Wikipedia, the free encyclopedia

In the mathematical field of real analysis, a simple function is a real (or complex)-valued function over a subset of the real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values. Some authors also require simple functions to be measurable; as used in practice, they invariably are.

A basic example of a simple function is the floor function over the half-open interval [1, 9), whose only values are {1, 2, 3, 4, 5, 6, 7, 8}. A more advanced example is the Dirichlet function over the real line, which takes the value 1 if x is rational and 0 otherwise. (Thus the "simple" of "simple function" has a technical meaning somewhat at odds with common language.) All step functions are simple.

Simple functions are used as a first stage in the development of theories of integration, such as the Lebesgue integral, because it is easy to define integration for a simple function and also it is straightforward to approximate more general functions by sequences of simple functions.

Definition

[edit]

Formally, a simple function is a finite linear combination of indicator functions of measurable sets. More precisely, let (X, Σ) be a measurable space. Let A1, ..., An ∈ Σ be a sequence of disjoint measurable sets, and let a1, ..., an be a sequence of real or complex numbers. A simple function is a function of the form

where is the indicator function of the set A.

Properties of simple functions

[edit]

The sum, difference, and product of two simple functions are again simple functions, and multiplication by constant keeps a simple function simple; hence it follows that the collection of all simple functions on a given measurable space forms a commutative algebra over .

Integration of simple functions

[edit]

If a measure is defined on the space , the integral of a simple function with respect to is defined to be

if all summands are finite.

Relation to Lebesgue integration

[edit]

The above integral of simple functions can be extended to a more general class of functions, which is how the Lebesgue integral is defined. This extension is based on the following fact.

Theorem. Any non-negative measurable function is the pointwise limit of a monotonic increasing sequence of non-negative simple functions.

It is implied in the statement that the sigma-algebra in the co-domain is the restriction of the Borel σ-algebra to . The proof proceeds as follows. Let be a non-negative measurable function defined over the measure space . For each , subdivide the co-domain of into intervals, of which have length . That is, for each , define

for , and ,

which are disjoint and cover the non-negative real line ().

Now define the sets

for

which are measurable () because is assumed to be measurable.

Then the increasing sequence of simple functions

converges pointwise to as . Note that, when is bounded, the convergence is uniform.

See also

[edit]

Bochner measurable function

References

[edit]
  • J. F. C. Kingman, S. J. Taylor. Introduction to Measure and Probability, 1966, Cambridge.
  • S. Lang. Real and Functional Analysis, 1993, Springer-Verlag.
  • W. Rudin. Real and Complex Analysis, 1987, McGraw-Hill.
  • H. L. Royden. Real Analysis, 1968, Collier Macmillan.